

3.

Minnesota State High School Mathematics League

2024-25 Sample Meet 4.2, Individual Event A

15 minutes

Score	Check

1. <u>A</u> = The equation $x^2 - 9x + A = 0$ has one root which is twice the other root. Determine the value of A.

2. <u>c =</u> If 32, a, b, c, 162 form a geometric progression, what is the value of c?

Determine the *sum* of the values of *x* such that

$$f(x) = \frac{4}{(x-6)^2} + \frac{(x-6)^2}{4}$$

takes on a minimum value.

4. <u>m+n=</u> The solution to $5^x + 5^{x+1} = 6\sqrt{5}$ can be written as $x = \frac{m}{n}$, where m and n are relatively prime positive integers. Determine the value of m + n.

5. _____ Suppose
$$N = \left\lfloor \frac{10^{2024}}{10^{88} - 7} \right\rfloor$$
. Find the remainder when N is divided by 100. *(Recall that* $\lfloor x \rfloor$ *is defined to be the greatest integer which is less than or equal to x.)*

4. Equilateral triangle ABC with side length 30 is inscribed in circle Ω . D is a point on minor arc \widehat{AC} of Ω so that BD = 33. Determine the *perimeter* of quadrilateral ABCD.

1.

Minnesota State High School Mathematics League

2024-25 Sample Meet 4.2, Individual Event C

15 minutes

Each of the numbers 1, 2, 3, 4, 5, and 6 is placed exactly once in a circle of Figure 1 so that pairs of numbers joined by a line always add to a prime number. The numbers 5 and 6 have been placed in the top two circles, and you'll note that 5+6=11, a prime number. What number must be placed in the circle opposite 6 (indicated with a question mark)?

Score

Check

2. X = The six-digit number 217X85, when divided by 9, leaves a remainder of 2. What is the value of the obscured digit, *X*?

4. In how many ways can the letters in BLUEFISH be rearranged so that no two vowels are adjacent?

5. _____ Find the sum of all possible integer values of *m* for which the pair of lines

$$13x + 11y = 700$$
$$y = mx - 1$$

intersect at a lattice point (i.e. a point with integer coordinates).

Mir	nnesota State High School Mathematics League 2024-25 Sample Meet 4.2, Team Event 30 minutes	Score	Check
terms	A geometric sequence has 20 terms. The sum of its first two terms is 40. The sum terms is 76. The sum of its first four terms is 130. How many of the terms in th integers?	of its firs e sequen	t three ace are
$c^2 =$	In triangle ABC , $\angle ABC = 15^{\circ}$, $\angle BAC = 45^{\circ}$, and $BC = 8$. If c is the length of \overline{A}	\overline{B} , find ϵ	c ² .
	In going through her grandmother's papers, Salma found a calculation with all but (shown below, where faded digits are designated by \Box). Her grandmother loved noted that all digits were one- digit primes. What was the value of this product?	one digit math, ar	t faded nd had
	$(a+b+c)^{15}$ is expanded and simplified. How many terms are in this simplified	expressio	on?
	What is the radius of the circle that goes through the points $A(6,26)$, $B(24,2)$, and	C(-16,	-18)?
	A <i>Heronian Triangle</i> is a triangle whose side lengths and area are all integers. 13-14-15 triangle with area 84 is a Heronian triangle.	For exan	nple, a
	If ABC is a non-isosceles Heronian triangle with height 20, determine the maxarea of $\triangle ABC$.	imum po	ossible
		Minnesota State High School Mathematics League 2024-25 Sample Meet 4.2, Team Event 30 minutes terms A geometric sequence has 20 terms. The sum of its first two terms is 40. The sum terms is 130. How many of the terms in the integers? c^2 = In triangle ABC , $\angle ABC - 15^\circ$, $\angle BAC - 45^\circ$, and $BC - 8$. If c is the length of A c^2 = In triangle ABC , $\angle ABC - 15^\circ$, $\angle BAC - 45^\circ$, and $BC - 8$. If c is the length of A (a) In going through her grandmother's papers, Salma found a calculation with all but (shown below, where faded digits are designated by \Box). Her grandmother loved noted that all digits were one- digit primes. What was the value of this product? \Box \Box $a = 0$ $a + b + c$) ¹⁵ is expanded and simplified. How many terms are in this simplified of A A Heronian Triangle is a triangle whose side lengths and area are all integers. 13-14-15 triangle with area 84 is a Heronian triangle. If <i>AHC</i> is a non-isosceles Heronian triangle with height 20, determine the max area of $\triangle ABC$.	Minnesota State High School Mathematics League Sore 30 minutes

Minnesota State High School Mathematics League

2024-25 Sample Meet 4.2, Answers

Event A:

Team Event: 2 1. (21-22 ST2, 97% correct) 2. 96 (23-24 3C2, 35% correct) 3. 375 (23-24 5T2, 63% correct) 4. 136 (20-21 5T3, 46% correct) 5. 25 (23-24 2D3, 7.8% correct) 6. 1470 (21-22 1T6, 11% correct)